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Fermi Gas in D-Dimensional Space

Sami M. Al-Jaber1
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We consider a Fermi gas in D-dimensional space and show how the physical
properties of the system behave as a function of the dimension D, in particular,
the density of states, the Fermi energy, and the radius of the Fermi hypersphere.

1. INTRODUCTION

Recently, there has been much interest in the investigation of the depen-

dence of physical systems upon the dimension D of space. It is believed that

the dimension of space plays an important role in quantum field theory [1],
in the Ising limit of quantum field theory [2], in random walks [3], and in

the Casimir effect [4]. Other workers have discussed path integration of a

relativistic particle in D-dimensional space [5, 6], and some authors have

considered the relationship between the eigenstates of a hydrogen atom and

a harmonic oscillator of arbitrary dimension [7, 8] and the construction of
coherent states defined in a finite-dimensional Hilbert space [9±13].

The purpose of this paper is to consider the Fermi gas in D-dimensional

space. The organization of this paper is as follows. In Section 2, I calculate

the density of states g(E ), which is the number of particle quantum states

per unit energy range; in Section 3, I derive the Fermi energy; Section 4 is

a conclusion.

2. DENSITY OF STATES

Consider a large number of identical noninteracting spin-1/2 particles
contained in a box with impenetrable walls each of length L. The time-

independent SchroÈ dinger equation inside the box is
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D
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i G c (x1, x2, . . . , xD) 5 E c (x1, x2, . . . , xD) (1)

The requirement that c vanishes at each of the walls gives the spatial part

of the wave function as

c 5 C &
D

i 5 1
sin 1 ni p Xi

L 2 (2)

where the normalization constant is C 5 (2/L)D/2. The corresponding allowed

values of the energy of a particle are

En 5
" 2 p 2

2mL2 n2 (3)

where n2 5 ( D
i 5 1 n2

l . In order to calculate the density of states, it is useful to

study the problem of the Fermi gas by imposing periodic boundary conditions

on the spatial part of the wave functions of the particles, that is, by requiring

these wave functions to be periodic in xi with period L. We then have traveling
plane-wave solutions of the form

c k(r) 5 &
D

j 5 1
exp[ikjxj] (4)

where the allowed values of the components of the wave vector k are given by

kj 5
2 p
L

nj , j 5 1, 2, . . . , D (5)

Because the particles have spin 1/2, each spatial orbital has S possible
spin states. As was shown by Menon and Agrawal [14], S must be D 2 1

for D . 1. Let Ns be the number of individual particle states having energies

up to E 5 " 2k2/2m. These states are contained within a hypersphere in k
space of radius k. Therefore,

Ns 5 (D 2 1) 1 L

2 p 2
D

3 VD (6)

where VD is the volume of the hypersphere, which in D-dimensional hyper-

spherical coordinates is

VD 5 # rD 2 1dr d V D (7)
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where the differential solid angle is

d V D 5 d u 1 sin u 2 d u 2 sin2 u 3 d u 3 ? ? ? sinD 2 2 u D 2 1 d u D 2 1

and the domain of integration is

r: 0 ® k, u 1: 0 ® 2 p , u i: 0 ® p (2 # i # D 2 1)

The integration in Eq. (7) is straightforward and the result is [15]

VD 5
p D/2KD

G (1 1 D/2)
(8)

where G (x) is the gamma function. Therefore Eq. (6) becomes

NS 5 (D 2 1) 1 L

2 p 2
D

p D/2

G (1 1 D)
KD (9)

Using E 5 " 2k2/2m, we can rewrite Eq. (9)

NS 5 (D 2 1) 1 L

2 p 2
D

p D/2

G (1 1 D/2) 1 2m

" 2 2
D/2

ED/2 (10)

The density of states, g(E ) is defined as the number of particle quantum

states per unit energy range. The number g(E ) dE of particles states within

the energy range (E, E 1 dE ) is thus given by dNS , so that

g(E ) 5
dNS

dE
5

D

2
(D 2 1) 1 L

2 p 2
D

p D/2

G (1 1 D/2) 1 2m

É2 2
D/2

E(D 2 2)/2 (11)

3. THE FERMI ENERGY

The Fermi energy EF can be evaluated by requiring that the total number

N of particles in the system should be equal to

N 5 #
EF

0

g(E ) dE

5 (D 2 1) 1 L

2 p 2
D

p D/2

G (1 1 D/2) 1 2m

" 2 2
D/2

ED/2
F (12)

so that

EF 5
" 2

2m
4 p F G (1 1 D/2)

D 2 1
r G

2/D

(13)
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where

r 5
N

V
(14)

is the number of particles per unit volume, and V 5 LD. Our result for EF

yields the well-known expression in three-dimensional space which is found

in most quantum mechanics textbooks [16],

EF (D 5 3) 5
" 2

2m
(3 p 2 r )2/3 (15)

The total energy of a Fermi gas in the ground state (at absolute temperature

T 5 0) is

Etot 5 #
EF

0

Eg(E ) dE

5
D(D 2 1)V

(D 1 2) (2 p )D 1 2m

" 2 2
D/2

p D/2

G (1 1 D/2)
E(D 1 2)/2

F (16)

and using Eq. (12), we get

Etot 5
D

D 1 2
NEF (17)

The average particle energy at T 5 0 is therefore

E 5
Etot

N
5

D

D 1 2
EF (18)

It is clear that for the three-dimensional case (D 5 3) Eq. (18) gives the

well-known result E 5
3

5
EF.

All occupied single-particles states of a Fermi gas at zero absolute

temperature fill a hypersphere in k space, having a radius KF . This is called

the Fermi hypersphere, and Eq. (12) gives

N 5 (D 2 1)
V

(4 p )D/2

KD
F

G (1 1 D/2)

which implies

KF 5 F (4 p )D/2

D 2 1
G 1 1 1

D

2 2 r G
1/D

(19)
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Again the above result yields the three-dimensional result for the radius of

the Fermi sphere, namely

KF 5 (3 p 2 r )1/3 for D 5 3

4. CONCLUSION

In this paper we have shown the dependence of a physical system upon

the dimesion D of space. In particular, we have considered a Fermi gas in
D dimensions and derived the density of states, the Fermi energy, and the

radius of the Fermi hypersphere. All these results were shown to depend on

the dimension D, and yield the expected results in three-dimensional space.
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